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Abstract
The theory of charge pumping through a quantum wire is considered in the
tight binding approximation. By introducing the Ricatti operator in the Hilbert
space of the side-band states (Floquet states) we drive the Ricatti equation for a
quantum wire driven by a time-periodic potential. Then a recursive method
is developed for numerical calculation of the Floquet scattering matrix by
expressing the right and left transmission and reflection operators in terms
of the Ricatti operator. We then apply the method to the problem of charge
pumping in a quantum wire attached to leads where the time-periodic potential
(harmonic, pulsed and triangular) is applied to two sites of the wire. Finally,
we show that the pumped current as a function of the wire–lead coupling shows
a sign reversal.

1. Introduction

The subject of parametric electron pumping has attracted considerable attention in recent
years [1–16]. An electron pump is a device which drives an electronic current by cyclic
deformation of two or more system parameters [9, 10]. This interesting device operates at zero
bias potential. The idea of producing current by cyclic deformation of the system parameters
was originally proposed by Thouless [11]. Quite recently, this phenomenon was observed
experimentally by Switkes et al [12] for an open quantum dot where the pumping signal was
adiabatically produced by cyclic variation of the confining potential. They also observed that
in the weak pumping regime the pumped current is sinusoidal in the phase difference of the
deforming potential and non-sinusoidal in the strong pumping regime.

The original parametric pumping theory was formulated for the adiabatic regime [2, 10],
which is valid up to first order in the pumping frequency. On the basis of the adiabatic
theory [9, 10, 13], the total charge pumped per cycle is proportional to the area enclosed by
the path in the parameter space, and non-zero current requires at least two parameters. This
condition is met for the input potentials having non-zero phase difference. But, this theory
is not consistent with the observed experimental results for zero phase difference [12]. The
general expression for the averaged pumped current based on the time dependent S-matrix
method for the adiabatic regime was derived by Brouwer [10]. It is important to note that the
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adiabatic condition dose not imply that the pumping amplitude should be small; in fact, the
adiabatic condition requires the oscillation period of the system parameters to be much larger
than the Wigner delay time, the time that characterizes the duration of the interaction. In an
attempt to go beyond the adiabatic approximation, Zhu and Wang [14] have, on the basis of the
Floquet theorem, developed a method for calculating the current in quantum pumps valid for
all regimes. They calculated the pumped current through a mesoscopic region in the presence
of a time-periodic potential. Interestingly, their method shows non-zero pumping current
at zero phase difference for asymmetric pumping amplitudes, consistent with the observed
experimental values [12]. In another attempt to go beyond the adiabatic approximation Wang
et al [13] have developed a first-principles formulation for quantum pumps, using Keldysh
non-equilibrium Green function theory. Their method also predicts non-zero current for zero
phase difference. Recently, Moskalets and Büttiker [15] have developed a Floquet scattering
theory for quantum mechanical pumps applicable to all regimes. For mesoscopic samples
they predicted a sign reversal of the pumped current when the pump frequency is equal to
the level spacing of the discrete states formed by the pumping potential. Kim [16] using the
same approach determined the validity of the adiabatic theory by using the Wigner delay time,
obtained from the Floquet scattering matrix. He also showed that the pumped current as a
function of the potential asymmetry at zero phase difference shows a sign reversal.

In this paper we develop a recursive method for calculating the elements of the Floquet
scattering matrix for a quantum wire driven by a time-periodic potential. Describing the
quantum wire in the tight binding approximation we first define the Ricatti operator in the
Hilbert space of the side-band states. We then derive the associated Ricatti equation. The
recursive method is then obtained by expressing the right and left transmission and reflection
operators in terms of the Ricatti operator. Next, we use the recursive method for determining the
pumped currents for harmonic, time-periodic pulsed and triangular potentials as a function of
the phase difference and the amplitude of the pumping potential. We then consider the variation
of the pumped current for different frequencies as a function of the wire–lead coupling. We
observe a sign reversal for the pumped current. We finally compare the observed sign reversal
with the sign reversals predicted in [15, 16] and discuss an application of this effect.

The paper is organized as follows. In section 2, we present the general formulation of
the parametric pumping for quantum wires in the tight binding approximation. In section 3,
defining the Ricatti operator on the Hilbert space of the side-band states, we derive the Ricatti
equation for a quantum wire driven by a time-periodic potential. We then show how the
transmission and reflection operators can be expressed in terms of the Ricatti operator, which
in conjunction with the Ricatti equation constitutes a recursive method for determining the
elements of Floquet scattering matrix. In section 4.1, we calculate the pumped current for a
harmonic pumping potential as a function of the phase difference, the amplitude of pumping
potential and the wire–lead coupling strength. We show that the sign of the pumped current is
dependent on the coupling strength and is zero for specific values of the coupling. In section 4.2,
we present some applications of the results obtained in the previous sections. Finally, we end
the paper with a conclusion.

2. General formula

In this section we consider a quantum wire in the tight binding approximation with a time
dependent periodic potential

V (n, t) =
r∑

l=r′
δl,n[Vl + 2Ṽl cos(ωt + φl)], (1)
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with period τ = 2π/ω. The sum is over the sites where the potential acts. The time dependent
Schrödinger equation in the tight binding approximation for an electron moving in the above
potential has the form

ih̄
∂φ(n, t)

∂ t
= −tn,n+1φ(n + 1, t)− tn,n−1φ(n − 1, t) + V (n, t)φ(n, t), (2)

where h̄ is Planck’s constant, n labels the sites of the wire and tn,n+1 is the hopping parameter
for sites n and n + 1. Equation (2) can be simplified by using the Floquet theorem. According
to the Floquet theorem the wavefunction can be written as

φ(n, t) = e−iEFlt/h̄ψ(n, t), (3)

where EFl is the Floquet energy and ψ(n, t) is a periodic function with period τ = 2π/ω,
which can be written as

ψ(n, t) =
∞∑

m′=−∞

√
2π

ω
e−im′ωtψm′(n). (4)

Using equations (3) and (4) in (2) and using the orthogonality of the side-band basis
functions, {√ω/2π exp(−imωt)}, we have

(EFl + mh̄ω)ψm(n) = −tn,n+1ψm(n + 1)− tn,n−1ψm(n − 1)

+
r∑

l=r′
δl,n([Vlψm(n) + Ṽl[eiφlψm+1(n) + e−iφlψm−1(n)]). (5)

To derive the Ricatti equation, we rewrite equation (5) in an operator form in the Hilbert space
of the side-band states {|m〉},m = 0,±1,±2, . . .. The side-band states are defined such that

〈t|m〉 =
√
ω

2π
e−imωt , m = 0,±1,±2, . . . . (6)

Next, we define the operators Ĥ0(ω), T̂+ and T̂− as follows:

Ĥ0(ω)|m〉 = mh̄ω|m〉, m = 0,±1,±2, . . . , (7)

T̂+|m〉 = |m + 1〉 (8)

and

T̂−|m〉 = |m − 1〉. (9)

It is a simple matter to show that the above operators satisfy the following commutation
relations:

[T̂+, T̂−] = 0, (10)

[Ĥ0(ω), T̂+] = h̄ωT̂+ (11)

and

[Ĥ0(ω), T̂−] = −h̄ωT̂−. (12)

Furthermore, we have

〈t|T̂+|m〉 =
√
ω

2π
e−i(m+1)ωt (13)

and

〈t|T̂−|m〉 =
√
ω

2π
e−i(m−1)ωt . (14)
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In terms of the side-band states {|m〉}, we can rewrite equation (4) as

|ψ(n)〉 =
∞∑

m′=−∞
ψm′ (n)|m ′〉. (15)

Also, we have

2 cos(ωt + φl)ψn(t) = eiφl〈t|T̂−|ψ(n)〉 + e−iφl 〈t|T̂+|ψ(n)〉. (16)

Thus, equation (5) can be written as

[EFl + Ĥ0(ω)]|ψ(n)〉 = −tn,n+1|ψ(n + 1)〉 − tn,n−1|ψ(n − 1)〉 + V̂ (n)|ψ(n)〉, (17)

where V̂ (n) is the potential operator, given by

V̂ (n) =
r∑

l=r′
δl,n[Vl + Ṽl(eiφl T̂− + e−iφl T̂+)]. (18)

Equation (17) is our starting point for the derivation of the Ricatti equation. It has the formal
form of the tight binding Schrödinger equation with Ĥ0(ω) and V̂ (n) being operators acting on
the Hilbert space of the side-band states. Equation (17) can be generalized for any time-periodic
pumping potential given by the Fourier series

V (t) =
∞∑

n=−∞
ane−inωt . (19)

The action of V (t) on the side-band states has the form

V (t)|m〉 =
[

a0 +
∞∑

n=1

(a−neinωt + ane−inωt )

]
|m〉, (20)

which, upon using equations (13) and (14), can be written as

V (t)|m〉 =
[

a0 +
∞∑

n=1

(a−n T̂ n
− + anT̂ n

+ )

]
|m〉, (21)

or

V (t)|m〉 = V̂ (T̂−, T̂+)|m〉, (22)

where

V̂ (T̂−, T̂+) = a0 Î +
∞∑

n=1

(a−n T̂ n
− + anT̂ n

+ ) (23)

is the operator form of the time-periodic pumping potential.

3. Transmission and reflection operators

For definiteness and ease of presentation of the formulation, we consider the configuration of
the quantum wire depicted in figure 1. The pumping potentials are applied to the wire at sites
−1 and +1. Also, different hopping parameters between the sites where the potential is applied
are chosen. With this choice, we can also consider the effect of the wire–lead coupling on the
pumped current.

The solutions of equation (17) in regions j � 2 and j � −2 for the case where the
incoming wave is in the nth channel and is incident from the left have the form [14]

|ψ( j)〉 =




ei( j+2)kn |n〉 +
∞∑

m=−∞
|m〉e−i( j+2)km Rl

mn, j � −2,

∞∑
m=−∞

|m〉ei( j−2)km T l
mn, j � 2,

(24)
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Figure 1. A schematic plot of a quantum wire.

where

Rl
mn = 〈m|R̂l|n〉 (25)

and

T l
mn = 〈m|T̂ l|n〉 (26)

are, respectively, the reflection and transmission amplitudes from the nth to the mth channel
and kn is the wavevector of the nth channel defined by En = −2t0 cos(kn) + nh̄ω0. Defining a
wavevector operator k̂ such that

k̂|m〉 = km|m〉 m = 0,±1,±2, . . . , (27)

and, using equations (25) and (26), we can rewrite the solution given by equation (24) in the
form

|ψ( j)〉 =
{
(ei( j+2)k̂ + e−i( j+2)k̂ R̂l)|n〉, j � −2,

ei( j−2)k̂ T̂ l|n〉, j � 2.
(28)

On the basis of equation (28), we can define a new operator ψ̂( j), such that

|ψ( j)〉 = ψ̂( j)|n〉 n = 0,±1,±2, . . . . (29)

For regions j � −2 and j � 2 this operator has the form

ψ̂( j) =
{

ei( j+2)k̂ + e−i( j+2)k̂ R̂l, j � −2,

ei( j−2)k̂ T̂ l, j � 2.
(30)

Substituting equation (29) into the Schrödinger equation, we obtain the following equation for
the operator ψ̂( j):

Êψ̂( j) = −t j, j+1ψ̂( j + 1)− t j, j−1ψ̂( j − 1) + V̂ ( j)ψ̂( j), (31)

where

Ê = EFl + Ĥ0(ω). (32)

We now cast equation (31) into the Ricatti equation form by defining the Ricatti operator Ŷ ( j)
by the relation

ψ̂( j + 1) = Ŷ ( j)ψ̂( j). (33)

This operator satisfies the Ricatti equation [17]

Ŷ ( j) = 1

t j, j+1
[V̂ ( j)− Ê] − t j, j−1

t j, j+1
Ŷ −1( j − 1). (34)

The Ricatti equation can be used to obtain the left and right transmission operators, T̂ l

and T̂ r . Using equation (33), we have

ψ̂(2) = Ŷ (1)ψ̂(1), (35)
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but from equation (30) the left transmission operator is given by

ψ̂(2) = T̂ l; (36)

thus

T̂ l = Ŷ (1)ψ̂(1). (37)

Also, we have

ψ̂(−2) = Î + R̂l. (38)

Upon using equation (33) in (37), we obtain for the left transmission operator

T̂ l = Ŷ (1)Ŷ (0)Ŷ (−1)Ŷ (−2)ψ̂(−2), (39)

or

T̂ l = Ŷ (1)Ŷ (0)Ŷ (−1)Ŷ (−2)( Î + R̂l), (40)

where according to equation (38) and the Ricatti equation the left reflection operator is given
by

R̂l = {[Ŷ −1(−3)− eik̂]
−1

[−2i sin k̂]} − Î . (41)

Also, we have

ψ̂(3) = Ŷ (2)ψ̂(2), (42)

which gives us the initial data

Ŷ (2) = eik̂ . (43)

The same procedure can be applied for the case where the incoming wave is incident from the
right. The transmission and reflection operators in this case are

T̂ r = Ŷ −1(−2)Ŷ −1(−1)Ŷ −1(0)Ŷ −1(1)( Î + R̂r) (44)

and

R̂r = {[Ŷ (2)− e−ik̂][2i sin k̂]} − Î , (45)

with initial data

Ŷ (−3) = eik̂ . (46)

Finally, we determine the left and right transmission and reflection operators for the case where
the input pumping potential acts at the general sites −m and n. Following the steps described
in this section, we obtain the following expressions for the left and right transmission and
reflection operators:

T̂ l = Ŷ (n)Ŷ (n − 1) · · · Ŷ (0)Ŷ (−1)Ŷ (−2) · · · Ŷ (−m − 1)( Î + R̂l), (47)

R̂l = {[Ŷ −1(−m − 2)− eik̂]
−1

[−2i sin k̂]} − Î , (48)

T̂ r = Ŷ −1(−m − 1)Ŷ −1(−m) · · · Ŷ −1(0)Ŷ −1(1) · · · Ŷ −1(n)( Î + R̂r) (49)

and

R̂r = {[Ŷ (n + 1)− e−ik̂][2i sin k̂]} − Î , (50)

with initial data equal to eik̂ , at sites n + 1 and −m − 2. Equations (47)– (50) in conjunction
with equation (34) provide a recursive method for numerical calculation of the elements of the
Floquet scattering matrix

Ŝ =
(

R̂l T̂ r

T̂ l R̂r

)
. (51)

Depending on the chosen dimension of the side-band space, the matrix equations for the Ricatti
operator with the initial conditions can be solved numerically, and these in turn can be used
for numerical calculation of the transmission and reflection operators.
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4. Results

In section 4.1 we apply the method developed in the previous section to calculate the pumped
current at zero temperature as a function of the phase difference, the amplitude of pumping
potential and the wire–lead coupling strength for harmonic input pumping potential, applied
to sites −1 and +1. In section 4.2, we consider the applications of the formalism developed in
the previous section. For all the calculations the dimensions of the side-band space are taken to
be equal to 41. This gives an accuracy of better than 10−8 for the calculated pumped currents.

4.1. Harmonic pumping potential

For the input harmonic pumping potential the potential operator in the Ricatti equation is
everywhere zero except at sites −1 and +1; it is given by

V̂ (−1) = V−(T̂− + T̂+) (52)

and

V̂ (+1) = V+(T̂−eiφ + T̂+e−iφ), (53)

where φ is the phase difference. If the system is in contact with ideal leads with identical
chemical potentials µ, the averaged pumped current per period, τ = 2π/ω0, is given by

I (µ) = e

π h̄

∫ 2t0

−2t0

dE g(E) f (E − µ)Tnet(E) (54)

where g(E) is the density of states of the wire, f (E) is the Fermi–Dirac distribution function
at zero temperature and Tnet(E) is the net transmission coefficient divided by the density of
states. This latter term for the incoming wave in the side-band state n = 0 with energy E is
given by the equation

Tnet(E) = 1

g(E)

∞∑
m=0

∣∣∣∣ sin(km)

sin(k0)

∣∣∣∣[|T r
m,0(E)|2 − |T l

m,0(E)|2]. (55)

In the above equation T r
n,m and T l

n,m are, respectively, matrix elements of the transmission
operators in the space of side-band states,which according to equations (40), (41), (44) and (45)
can be written as

T l
n,m = 〈n|Ŷ (1)Ŷ (0)Ŷ (−1)Ŷ (−2){[Ŷ −1(−3)− eik̂]

−1
[−2i sin k̂]}|m〉 (56)

and

T r
n,m = 〈n|Ŷ −1(−2)Ŷ −1(−1)Ŷ −1(0)Ŷ −1(1){[Ŷ (2)− e−ik̂]−1[2i sin k̂]}|m〉. (57)

For chemical potential, µ, equal to zero and the hopping parameters, tn,n+1, equal to one,
the pumped current for the weak regime is calculated for V+ = V− as a function of the phase
difference. The results for three different frequencies are depicted in figure 2. We have the
known sinusoidal behaviour of the adiabatic theory. Figure 3 represents the pumped currents
for the same configurations but for the strong pumping regime. The pumped currents for the
asymmetric cases, V+ �= V−, as a function of the phase difference are depicted in figure 4.
We have the same results as reported by Zhu and Wang [14]; for the zero phase difference the
pumped currents are non-zero. Finally, by taking the values of tl and tr equal to each other,
but different to the rest, we can consider the segments n < −1 and n > 1 as the left and
right leads, respectively, and tl = tr = t as the term for the coupling between the wire and
leads. Figures 5(a) and (b) represent the pumped currents for the weak and strong regimes,
respectively, as a function of t for the phase difference equal to π/4 and π/2. It can be seen
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Figure 2. The pumped currents in units of et0/π h̄ for frequencies ω = 0.2 (dashed curve), ω = 0.3
(dotted curve) and ω = 0.4 (solid curve) as a function of the phase difference φ, for harmonic input
signals. The energy scale is t0, EF = 0.0, tl = tr = t1 = t0 = 1.0 and V+ = V− = 0.1 (weak
regime).
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Figure 3. The pumped currents in units of et0/π h̄ for frequencies ω = 0.2 (dashed curve), ω = 0.3
(dotted curve) and ω = 0.4 (solid curve) as a function of the phase difference φ, for harmonic input
signals. The energy scale is t0, EF = 0.0, tl = tr = t1 = t0 = 1.0 and V+ = V− = 0.6 (strong
regime).
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Figure 4. The pumped currents in units of et0/π h̄ for frequency ω = 0.1 as a function of the
phase difference φ, for input signal strengths V+ = 0.1, V− = 0.2 (dashed curve), V+ = 0.1,
V− = 0.4 (dotted curve) and V+ = 0.1, V− = 0.1 (solid curve). The energy scale is t0, EF = 0.0
and tl = tr = t1 = t0 = 1.0.

0.0 0.5 1.0 1.5 2.0
-0.015

-0.010

-0.005

0.000

0.005

(b)

V+ = V- = 1

pu
m

pe
d 

cu
rr

en
t

t
0.0 0.5 1.0 1.5 2.0

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

(a)

V+ = V- = 0.1

pu
m

pe
d 

cu
rr

en
t

t

Figure 5. The pumped currents in units of et0/π h̄ for φ = π/2 (dotted curve) and φ = π/4 (solid
curve) versus the parameter of the coupling between the wire and leads, (a) for weak regimes: the
energy scale is t0, EF = 0.0, ω = 0.1 and t1 = t0 = 1.0; (b) for strong regimes: the energy scale
is t0, EF = 0.0, ω = 0.4 and t1 = t0 = 1.0.

that the sign of the pumped current depends on the strength of the coupling between the wire
and leads and a sign reversal can occur by varying the t . We now discuss the origin of this
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sign reversal. For simplicity, the coupling of the wire to the left and right leads for t > 1
is considered as a static double barrier and for t < 1 as a static double well. The double
barrier (double well) creates resonance states within the energy band of the quantum wire.
The effect of a time-periodic pumping potential on the incoming waves with energy E is to
scatter them to different Floquet states with energy E + mh̄ω0, where m = 0,±1,±2, . . ..
Therefore, the reflected and transmitted waves are superpositions of the Floquet states. But
each of the Floquet states due to the scattering from the static double barrier (double well)
acquires an extra phase shift. Since the scattering phase shift is an energy dependent quantity,
each Floquet state acquires a different phase shift. Thus, an extra phase difference between
any two Floquet states appears, which depends on the height of the double barrier (the depth of
the double well), i.e. on the strength of the wire–lead coupling. Thus the wire–lead coupling
contributes an additional term to the total phase difference. Since the pumped current is an
odd function of the phase difference, whenever this additional phase difference becomes equal
to odd multiples of π the pumped current changes sign. The additional phase difference can
also cause sign reversal as a function of frequency. This can happen whenever absorption
(emission) of energy from the input pumping potential causes the incoming wave with energy
below (above) the energy of a resonance state to make a transition to a Floquet state with
energy above (below) the energy of a resonance state.

4.2. Applications

In this section we consider some applications of the results obtained in the previous sections.
We first consider the application of the recursive method to the general time-periodic potential.
Then we discuss an application of the sign reversal.

The representation of the left and right transmission operators in terms of the Ricatti
operator and the general expression of the input pumping potential in terms of T̂+ and T̂−
operators, equation (23), provide a simple and fast way for numerically calculating the pumped
current for an arbitrary time-periodic input potential.

We first determine the pumped current for a time-periodic pulsed input potential acting at
sites −1 and +1. The potential operator is zero everywhere except at the aforementioned sites;
it is given by

V̂ (−1) = V−
{

a0 Î +
∞∑

n=1

[a−neinφ T̂ n
− + ane−inφ T̂ n

+ ]

}
(58)

and

V̂ (+1) = V+

{
a0 Î +

∞∑
n=1

[a−n T̂ n
− + an T̂ n

+ ]

}
, (59)

where

a0 = τ ′

β
(60)

and

an = 2

nωβ
sin

(
nωβ

τ ′

)
n = ±1,±2, . . . , (61)

which τ ′ is the duration of the pulse, β its period, and V− and V+ are the amplitudes. The
calculated pumped current as a function of the phase difference,	φ = φ, for the weak pumping
regime is presented in figure 6. We have also carried out the calculation for the triangular shape
time-periodic input potential for which the potential operators at sites −1 and +1 are given by

V̂ (−1) = V−
{

a0 Î +
∞∑

n=1

[a−neinφ T̂ n
− + ane−inφ T̂ n

+ ]

}
(62)
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Figure 6. The pumped currents in units of et0/π h̄ versus the phase difference φ, for pulsed periodic
potential. The energy scale is t0, EF = 0.0, tl = tr = t1 = t0 = 1.0, V+ = V− = 0.1 and τ ′ = 2π .

and

V̂ (+1) = V+

{
a0 Î +

∞∑
n=1

[a−n T̂ n
− + an T̂ n

+ ]

}
, (63)

where

a0 = 0 (64)

and

an = 4

n2π2
n = ±1,±2, . . . . (65)

The results are depicted in figure 7.
Finally, we discuss an application of the sign reversal. Figure 8 represents the plots of

frequency versus the smallest value of the strength of the coupling between the wire and leads
where the current becomes zero. The graphs correspond to three different amplitudes for the
pumping potential. The pumped current becomes zero wherever the total phase difference
becomes equal to zero or integer multiples of π . For the configuration we have chosen for the
quantum pump, the total phase difference, 	φ, is a sum of three terms, 	φ1, 	φ2 and 	φ3;
i.e. 	φ = 	φ1 + 	φ2 + 	φ3. The first term, 	φ1, is the phase difference of the pumping
potential. For the results depicted in figure 8 this is fixed at π/2. The second term is the phase
difference predicted in [15]. This phase difference is a manifestation of the existence of two
different amplitudes for the absorption (emission) of energy from the pumping potential. Since
these two amplitudes are spatially separated, a phase difference between them appears. In the
adiabatic regime for an oscillating double barrier with separation l (the model used in [15])
this phase difference is proportional to (

√
E − √

E + h̄ω)l, where the energy E is close to the
Fermi energy of the leads. It is independent of the strength of the wire–lead coupling. The
third term is the phase difference caused by the scattering of the Floquet states from the static
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Figure 7. The pumped currents in units of et0/π h̄ versus the phase difference φ, for a periodic
triangular potential. The energy scale is t0, EF = 0.0, tl = tr = t1 = t0 = 1.0 and V+ = V− = 0.1.
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Figure 8. Plots of the frequency versus the smallest value of the strength of the coupling between
the wire and leads where the pumped currents become zero. The energy scale is t0, EF = 0.0,
t1 = t0 = 1.0 and φ = π/2.

double barrier (double well), formed by the coupling between the wire and leads. This phase
difference and its variation depend on the locations and the widths of the resonance states. For
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t from 0.6 to 0.8 and from 1.4 to 1.6 the locations of zeros are approximately independent of t .
In these ranges the behaviour of the total phase difference is dominated by	φ2. For t between
0.8 and 1.4 the major contribution to the total phase difference is due to 	φ3. In this region
resonance states appear below (t < 1) and above (t > 1) the Fermi energy. Within the range
0.9 < t < 1.1, the resonance states are close to the Fermi energy with short lifetimes (wide
width). The peak at t = 1.22 is mainly caused by a narrow resonance state, not too close to
the Fermi energy. In principle, by searching for a frequency that makes the current equal to
zero, plots like figure 8 can be used for the experimental determination of the strength of the
coupling between the wire and leads.

5. Conclusion

To summarize, the Hilbert space of the side-band states is the most natural space in which to
formulate the theory of quantum pumps. The recently proposed Floquet scattering matrix [15],
for charge pumping in the mesoscopic conductors, is an operator in this space. Therefore,
formulating the general theory of the quantum pump in this space might be of considerable
importance. In this work, first, using the tight binding approximation, we showed how this
can be done for a quantum wire driven by a time-periodic potential. Furthermore, by defining
the Ricatti operator in this space, we have derived the Ricatti equation. This allowed us to
express the right and left transmission and reflection operators (the elements of the Floquet
scattering matrix) in terms of the Ricatti operator which in turn can be used for a recursive
calculation of the Floquet scattering matrix. Next, we used the aforementioned recursive
method for numerical calculation. We have calculated the pumped current as a function of
the phase difference, the amplitude of the pumping potential and the strength of the wire–lead
coupling. We have shown that the current as a function of the wire–lead coupling shows a sign
reversal. In section 4.2, we discussed the origin of this sign reversal, which is different to the
sign reversals predicted in [15, 16]. As discussed in section 4.2, the total phase difference is the
sum of contributions from the phase difference of the pumping potential, the phase difference
predicted in [15] and the phase difference caused by the scattering of the Floquet states from
the double barrier (double well) formed by the coupling of the wire to the leads. Since the
pumping potential that we have used is spatially symmetric, the results of [16] are not relevant
to the sign reversal that we have observed. Finally, we have pointed out how, in principle, the
zeros of the current as a function of the frequency and the wire–lead coupling can be used for
the experimental determination of the strength of coupling between the wire and leads.
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